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Abstract
High electron mobility transistors (HEMTs) have become important for high frequency and low
noise applications. There are devices now operating with a cutoff frequency, fT, of several
100 GHz. Through simulation, we have been investigating how these frequencies may be
pushed even higher, and have found that it may be possible to achieve an fT of over 3 THz. For
this, we have used a full-band, cellular Monte Carlo transport program, coupled to a full
Poisson solver, to study a variety of InAs-rich, InGaAs pseudomorphic HEMTs and their
response at high frequency, concentrating on devices with a structure (from the substrate)
InP/InAlAs/InGaAs/InAlAs/InGaAs, with the quantum well composed of In0.75Ga0.25As. We
have studied gate lengths over the range 10–70 nm and various source–drain spacings. The
performance of scaled devices has been evaluated to determine the ultimate frequency limit.
Here, the importance of the effective gate length has been evaluated from the properties internal
to the device.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the search for sources and detectors in the terahertz regime,
the high electron mobility transistor (HEMT) has become one
of the devices of choice [1]. Experimentally, the use of In-rich
InGaAs on InP-based pseudomorphic high electron mobility
transistors (PHEMTs) has recently resulted in submillimeter-
wave amplifiers above 300 GHz [2] and individual transistor
cutoff frequencies approaching 600 GHz [3]. Improved
figures of merit, such as cutoff frequency, fT, maximum
frequency of oscillation, fmax, and maximum gain in InP-based
HEMTs are primarily a result of higher carrier mobilities and
correspondingly larger peak carrier velocities achieved through
the strained growth of InGaAs/InAlAs on InP and better
separation between conduction carriers and ionized dopant
atoms. In addition, the large conduction band offset between
InGaAs and InAlAs (0.53–0.63 eV) [4] provides enhanced
confinement of carriers in the resulting two-dimensional

1 Present address: Department of Electronics and Electrical Engineering,
Glasgow University, Glasgow G12 8LT, UK.

electron gas (2DEG) allowing for higher sheet carrier densities
(2 × 1012–4 × 1012 cm−2) within the active channel region of
the device.

Over the last few years, we have made a major effort
to simulate such devices with the aim of optimizing their
performance. Amongst our results, we have found that fT

may be greatly enhanced by reducing the gate length and the
source–drain spacing (SDS), with fT s above 1.5 THz obtained
for a device with 20 nm gate length and a 500 nm SDS [5].
More recently, we showed that using a very short device
(300 nm SDS) and scaling the gate length was successful in
establishing a theoretical upper limit for fT in an InGaAs
PHEMT [6, 7]. Through an appropriate definition of an
effective gate length and extrapolation to vanishingly small
physical gate length, we found that this is of the order of 3 THz,
a result far higher than some previous estimates of this quantity.
In establishing such limits, we found that using the results of
a full RF analysis [6, 7] is crucial in formulating a definition
of an effective gate length. Using the depletion length as the
effective gate length [8], and using that to estimate fT, can lead
to an underestimate of the theoretical value of this quantity by
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more than a factor of two, as our more mathematical analysis
has shown.

In this paper, we will review our recent work and discuss
the current understanding that we have of the physics that is
important for ultrashort gate length HEMTs, using the In-rich
InGaAs channel HEMT as our prototypical device. Here, we
will discuss the role of series resistances, results on scaling the
gate length, and the importance of an appropriate definition
of the effective gate length. The importance of the contact
resistance, source–drain spacing, gate–channel spacing, and
quantum well width will all be discussed.

The paper is organized as follows. In section 2, we shall
briefly describe the full-band, cellular Monte Carlo simulation
tool that has been developed by our group. We shall also
discuss the device structure that is used in the simulation, and
give some details of the band structure and phonon models
that have been utilized in obtaining our results. In section 3,
we will discuss the role of resistance in the devices and the
effect of varying the total device length. In section 4, we shall
discuss the results of scaling the gate length and how one may
infer an upper limit for the cutoff frequency. We draw some
conclusions in the final section.

2. The full-band Monte Carlo simulation approach
as applied to the PHEMT device structure

The full-band simulator used in this work is based upon a
hybrid transport approach discussed previously [9]. This
simulator combines a traditional ensemble Monte Carlo
method (for low carrier energies) with a cellular Monte Carlo
approach (at high carrier energies). In our simulator, the
solution of Poisson’s equation is computed using a fast multi-
grid technique [10], which solves the full set of electrostatic
field equations resulting from a center-difference discretization
of the 3D Poisson equation over a set of grids with varying
coarseness. These grids act in concert to simultaneously reduce
the different low and high frequency components of the error,
resulting in faster and more robust convergence [11].

A full-band representation of the electron dispersion
relationship is computed via the empirical pseudopotential
method (EPM) [12] and includes local, non-local, and spin–
orbit interactions in the calculation. Non-local corrections are
included only for the off-diagonal Hamiltonian elements, in
keeping with the original formulations of this effect [13, 14].
The pseudopotential parameters that we used are adjusted to
give a best fit to the valence band at � and the positions of the
three conduction band minima, rather than the overall optical
absorption properties, although the starting parameters were
taken from Chelikowsky and Cohen [12] and from Pötz and
Vogl [4].

An important effect that must be accounted for in our
simulations is the strain caused by the lattice mismatch
at the In0.52Al0.48As/In0.75Ga0.25As heterojunctions. This
strain is the result of lattice deformation due to growth
layer accommodation of the lattice spacing to the underlying
substrate material. These physical changes in the crystal lattice
result in changes in the Brillouin zone (BZ) and a subsequent
breaking of degeneracy in the electronic band structure as

the material changes from a zinc-blende structure due to a
tetragonal distortion. The end result is an enlarged irreducible
BZ wedge that has different symmetry properties than that
of the unstrained zinc-blende structure. In order to model
the effects of the strained band structure in our simulator, we
matched the lattice constant of In0.75Ga0.25As to that of the
InP substrate and then systematically adjusted and fine-tuned
the correct symmetric and anti-symmetric pseudopotential
parameters to match as closely as possible a band gap energy
of 0.58 eV [15], and the corresponding energy offsets between
�–L and �–X valleys in the electron dispersion relationship.
Importantly, in our simulations, we maintained a zinc-blende
material structure and simply applied the necessary strain
hydrostatically. This approximation assumes an isotropically
strained unit cell and allows us to utilize a smaller irreducible
wedge than would be necessary for a tetragonal crystal
structure. We took this approach for the simple reason that the
nature of the tetragonally distorted cell and its band structure
is not known at this time. This is further complicated by
the fact that Mikkelsen and Boyce [16] have shown that the
InAs and GaAs nearest-neighbor bond lengths remain nearly
constant at the binary values over the entire composition range.
How this varies with the strain and the tetragonal distortion is
currently not known. In view of this, approximating the band
structure with the hydrostatic strain model is probably as good
an approximation as any available at the current time.

Phonons in ternary compounds often exhibit two-mode
behavior, resulting in two sets of optical branches instead of
one. The use of InGaAs in particular results in both GaAs-like
and InAs-like modes for which the compositional dependences
of longitudinal and transverse optical modes near the center
of the Brillouin zone have been measured experimentally by
means of Raman scattering and compared with theoretical
calculations [17]. In order to determine the proper electron–
phonon scattering rates, the full phonon spectrum for the
material is computed over the first BZ in our simulator.
We accomplish this by using a 14-parameter valence shell
model [18–20] to calculate the lattice energy. However, the
LO modes are affected by the dielectric properties as well as
the elastic properties, and it is not known how these vary with
the strain in the crystal, or with the tetragonal distortion. As
a result, for the results presented in the following sections,
phonon scattering rates were calculated using only the InAs
phonon modes. This approximation was used due to the In-rich
nature of the simulated alloy, and the fact that the InAs-like LO
mode would dominate the overall scattering. This was found
to yield device simulation results comparable with measured
device characteristics [5].

Our code includes scattering mechanisms due to
deformation potential, optical and acoustic phonons, and polar
optical phonons. Impurity scattering is included via the
Ridley model [21]. All of the possible initial and final
momentum states for each possible scattering mechanism
are pretabulated and stored in extensive data tables which
are subsequently loaded into random access memory (RAM)
during simulation runtime. This preprocessing step simplifies
the final state selection process to the generation of a single
random number, significantly reducing the time required to
update the corresponding carrier energy and momentum [9].

2



J. Phys.: Condens. Matter 20 (2008) 384201 R Akis et al

Figure 1. Simulated two-dimensional PHEMT structure. For the
purposes of clarity, the figure is not to scale. The various layers are
nominally undoped, but we have used a value of 1012 cm−3 in the
code to ease convergence of the Poisson solver. The layer thicknesses
shown here apply only to the 300 nm device.

While our simulations are entirely particle based, we do
compensate somewhat for quantum effects in the channel,
specifically, the charge setback from the gate that one expects
due to the effects of subband quantization. This has been
accounted for in our simulations using an effective potential
model [22].

The basic device structure used in our 2D simulations is
shown in figure 1. The computational layout is a simplified
version of a recessed T-gate structure [2]. This simplification
has been made to ease the simulation task. While the
structure of [2] appears to have SiN only on the surfaces
of the semiconductor and the gate, we have filled the entire
(square) recess with this insulator. The thicknesses and doping
concentrations of the heterolayers were chosen to closely
match those actual devices. Source and drain electrodes
are treated as vertical ohmic contacts extending down from
the cap to the active channel region. The gate electrode is
treated as an absorbing Schottky contact with a 0.8 eV barrier.
Conduction band offsets of 0.53 eV were used for both the
In0.53Ga0.47As/In0.52Al0.48As and In0.75Ga0.25As/In0.52Al0.48As
heterojunctions, with 0.34 eV used at the In0.52Al0.48As/InP
interface. Chosen to match experimental observation [2], a δ-
doping layer concentration of 3.5 × 1012 cm−2 has been used.

In the remainder of this paper, results are shown for
devices ranging in total length from 640 nm to 2 μm, while
a second set of results were obtained with L tot fixed at 300 nm
in each case. For the longer devices, tensor product grid grids
of 320 × 95 up to 1000 × 95 were used with uniform grid
spacings in the x direction (�x = 2 nm) and non-uniform �y
spacings, between 0.5 and 14 nm. A finer grid is used across
the active channel region, the highly doped delta-doping layer
and cap layers, and a coarser grid utilized in the buffer and
substrate layers. The δ-doping layer was spread over three grid
cells along the positive y direction, 4 nm from the channel. It
was found that spreading the δ-doping over a number of grid
cells allowed for a better fit to the threshold voltage and the
sheet charge density when comparisons to real devices were
made [5]. For the L tot = 300 nm results shown in section 4,

the system was represented on a 150 × 148 grid. The number
of grid points along the perpendicular direction is higher since
more grid points with the shorter �y = 0.5 spacing were
included. This allowed for a finer control of the gate to channel
distance and the channel thickness for our scaling simulations.
In addition, the δ-doping layer was spread over two grid cells
along the positive y direction, 1 nm from the channel for the
300 nm device.

In all cases, the entire structure sits atop an InP substrate
and an ‘undoped’ In0.52Al0.48As buffer layer is added next.
During the course of our studies, we have varied the thickness
of this buffer layer and even taken it to the bottom of the
simulation domain without producing any significant change
in the results. We have left it at the nominal thickness of
∼200 nm here (when the channel thickness, dc, is reduced
from 18 to 10 nm in section 4, we make this buffer layer
thicker to ensure that the total height of the device is constant;
all results in section 3 use dc = 18 nm). The InP substrate
is included as we know the donor levels here better. While
we presume that the layers are nominally undoped (or, more
properly, not intentionally doped), we have assumed a doping
of 1×1012 cm−3 as the background doping for all layers, other
than the δ-doped layer, in order to ease the convergence of the
Poisson solver.

The back contact of the substrate is treated as a constant
potential surface, with a local potential relative to the Fermi
energy (which is the reference level for all potentials in the
simulation) that is set by the doping of the substrate. The
rationale for this lies in submillimeter-wave device packaging.
Normally, these devices are mounted on a metalized carrier.
In addition, the source itself is well grounded to assure
good signal grounds. As a result of this, we use a vertical
source contact (on the left in figure 1) and similarly with the
drain contact. But, the metal carrier also provides excellent
screening of the substrate so that there is no charge build-up in
the substrate. Hence, we find it acceptable to treat the substrate
as the equipotential surface described here.

3. Results as a function of device length and the role
of contact resistance

One of the most important issues in trying to improve
device performance is examining and understanding the role
of contact resistance. In our simulator, we can control
this property by adjusting the doping concentration in the
small region which is defined to be the contact. We have
found that using too low a value of the doping leads to
potential drops in the contact regions, and subsequent poorer
device performance. Moreover, we have established that
the actual simulated contact resistance can be related to
observed experimental values [5], so that good agreement
with experimental Id–Vd characteristics can be obtained.
More important, however, is the fact that the part of the
device between the source contact and the gate also provides
a significant series resistance, which affects the device
performance. Thus, the simulated device characteristics are
related to the manner in which device contacts are handled.

Here, both the source and drain contacts are treated
as ohmic contacts while the gate electrode is treated as an
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Figure 2. Variation of the effective source resistance created by the
potential drop adjacent to the source contact, as a function of the
contact doping. The source resistance is estimated from the reduction
in transconductance with resistance, as shown in equation (1).

absorbing Schottky contact with a barrier height of 0.8 eV.
In the context of our simulations, ‘ohmic’ contact means
the following: the ‘effect’ that a metallic contact has on
the semiconductor material directly adjacent to it is what
is actually being simulated during runtime. Two primary
boundary conditions are established on these ‘contact cells’
within the simulation domain. First, a fixed potential or
enforced Dirichlet boundary condition (necessary for the
solution of Poisson’s equation) is imposed. The second
condition is that of charge neutrality. This boundary condition
is imposed on the Boltzmann transport equation, which is
solved stochastically by the cellular Monte Carlo portion
of the code. Charge neutrality is assured by assigning a
doping concentration to each simulated contact cell during
the initialization phase of the simulation. A fixed number
of simulated particles are then maintained in each contact
cell throughout the total simulation time and carriers are
subsequently injected and/or ejected following each periodic
update of the electrostatic potential ensuring charge neutrality
within these regions [23]. The simulated doping within the
‘contact cells’ creates a potential drop near the ohmic contacts
that emulates an effective source resistance. Thus, by varying
the doping concentration within the contact cells, we can easily
study the effect of an internal contact resistance in our model.
This is illustrated in figure 2. Increasing the doping density
in the contact regions means that more carriers are initialized
in these regions and thus a larger integer number of carriers are
maintained via charge neutrality in the contact cells. The effect
of increasing the doping density in the regions is clearly seen in
the effective resistance curve. In this case, a set of 70 nm gate
simulations were performed over a range of contact dopings.
The effective resistance can be determined from the reduction
in transconductance from that of nearly infinite contact doping,
using the common relationship

gm = gm0

1 + gm0 RC
. (1)

If the doping is set too low, then charge neutrality cannot be
maintained in the contact regions, so only the range of dopings
where we have confidence in the results is shown. A similar

Figure 3. (a) Calculated output current of a 70 nm gate PHEMT as a
function of source–drain spacing, for a δ-layer doping concentration
of 3.5 × 1012 cm−2 and a simulated ‘contact’ doping of
3 × 1018 cm−3. Here, VD = 1.0 V and VG = 0.4 V. (b) As in (a), but
now the peak transconductance is plotted with VD = 1.0 V.

result was obtained by actually measuring the potential drops
at the contacts that were found from the Poisson solver. While
the quantitative results differed, the trends were quite similar.
Thus, the contacts are a crucial point in the simulation, and
must be carefully addressed.

In a similar manner, the semiconductor material between
the source and drain also provides a series resistance within
the device. We have also studied this effect, particularly as
the devices that we typically simulate are generally shorter
than the experimental ones. In this case, a set of 70 nm gate
simulations were performed over a range of device lengths
from 0.64 to 2.0 μm. In each of these simulations the contact
doping was fixed at 3 × 1018 cm−3. In figures 3(a) and (b),
we plot the drain current at VD = 1.0 V and VG = 0.4 V
and the peak transconductance at VD = 1.0 V. The peak
transconductance has increased from 1500 mS mm−1 to almost
1900 mS mm−1, as the channel length is shortened, indicating
faster overall device response. An increase in the source–drain
spacing reveals a decrease in the overall drive current and lower
peak transconductance as L tot is increased. This effect is best
understood by relating the additional distance carriers must
travel across the active channel region to an increase in the
effective internal source to drain series resistance of the device.
Thus, as L tot is increased, this resistance increases and results
in lower drive currents and reduced switching speeds.

In addition to static DC characterization, small-signal
analysis was also performed in order to investigate the
frequency response of each structure and to determine the
corresponding maximum current gain achievable in each case.
This analysis is performed by first biasing each device at
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Figure 4. Variation of the cutoff frequency with the source–drain
spacings for 35 and 70 nm gate lengths.

a known bias point in the operating region and allowing it
to reach a quasi-static dc (steady-state) condition. Next, a
small voltage (typically 200 mV) step is applied directly to
the gate (drain) contact while holding the drain (gate) at a
constant electrostatic potential. The corresponding gate (drain)
currents are then stored after each update of the field equations
and used during post-simulation analysis to compute the y-
parameters [1] (via the Fourier transform) which are then used
to extract the corresponding small-signal gains. In figure 4,
we plot the variation of this cutoff frequency as determined
from the current gain for the various device lengths, in order
to see how it affects the high frequency performance. Here
we consider gates of lengths of 70 and 35 nm. For the 70 nm
gate length, fT reveals an exponential increase in the cutoff
frequency as the total device length, L tot, is scaled downward
(note the logarithmic scale). The 35 nm results appear to follow
basically the same trend.

We now consider the 300 nm device. In figure 5(a), we
map the position of the carriers, located between the source and
the gate, in the full BZ for a simulation obtained in that case.
Here, it may be observed that these carriers are almost entirely
low energy carriers in the � valley of the conduction band.
Hence, these carriers are moving relatively slowly and lead
to the effective series resistance. A second important aspect
is that the carriers begin to transfer to the L valleys as soon as
they are accelerated under the gate. Once in the satellite valleys
(either L or X), they remain in these valleys for a very long
time. Because the mass in the � valley is so low, the density of
states is also low and the resulting rate of scattering from L (or
X) to � is quite small [24]. We see this in figure 5(b), where we
plot the position of the carriers, located in the channel between
the gate and the drain, in the BZ. Some carriers remain in the �

valley, since the field and the velocity both drop in this region
(beyond the gate). The peak of the velocity is actually reached
when only a few per cent of the carriers have transferred to
the satellite valleys. In this regard, since the fields are low
in the gate–drain region, this is primarily a drift region with
the carriers moving relatively slowly with the properties of the
satellite valleys. However, one advantage is that the threshold
energy for impact ionization is considerably higher in these

Figure 5. The projection of the simulated particles onto the Brillouin
zone. Those particles located between the source and gate are
depicted in (a), while (b) depicts those particles located between the
gate and the drain. The shading is an energy code (which is measured
relative to the valence band maximum). (c) Comparison of the
transconductance of a 10 nm gate length, 10 nm channel device with
a total source–drain spacing of 0.3 μm, as the source–gate distance is
varied. Inset: cutoff frequency as a function of source–gate distance.

valleys (∼1.5 × the L valley to valence band maximum gap),
so it plays little role in device operation. In view of this, these
devices can take high bias.

The effect that the slow moving carriers in the source
to gate region have on device operation can be further
demonstrated by looking at the effect that changing this
distance has on the transconductance for a 10 nm gate length
device. This is shown in figure 6, where we vary the source–
gate distance over more than a factor of 2 (about the nominal
distance). Here, it can be seen that lowering this distance
from 140 to 60 nm produces almost a 40% increase in the
transconductance. This change in distance also affects the
gate–source capacitance. In the inset, we plot cutoff frequency
over the same range of source–drain voltages. However, the
latter only exhibits about a 10% increase. Nevertheless, it
is clear that good design for mm-wave applications requires
reduction of the device dimensions, particularly between the
gate and the source.

4. Scaling the gate length to establish an upper limit
for the cutoff frequency

In this section, we summarize the results that we have obtained
by the scaling the gate length. The PHEMTs studied had gate
lengths ranging 10 to 50 nm. In each of these simulations the
contact doping was fixed at 3 × 1018 cm−3. We have fixed
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Figure 6. Comparison of the transconductance of a 10 nm gate
length, 10 nm channel device with a total source–drain spacing of
0.3 μm, as the source–gate distance is varied. Inset: cutoff frequency
as a function of source–gate distance.

L tot = 0.3 μm, but the gate to channel separation is scaled
with the gate length according to dg = Lg/5. In figure 7(a),
we plot the velocity along the channel as a function of position
within the channel. Here, a channel thickness of dc = 18 nm
was employed. These velocities were computed by doing a
weighted averaging along the y direction in the total channel
region:

vavg
x =

(∫ y2

y1

nvx dy

)/(∫ y2

y1

n dy

)
, (2)

where n is the electron density and y1 and y2 are the upper
and lower boundaries of the channel as indicated in figure 1. It
should be noted that the velocity begins to rise before the gate
is reached, a result of field spreading in the gate direction [25].
The peak of the velocity, in each case, occurs before the end
of the gate is reached, and this is the point at which significant
numbers of carriers are being transferred to the satellite valleys,
as mentioned above. Figure 7(b), we plot the transconductance
as a function of gate voltage for these same devices. It may
be seen that the transconductance is enhanced as the gate
length is reduced, which implies a better frequency response
as well.

In figure 8, we plot simulated drain current, Id as a
function of both gate voltage, Vg, and VDS, for a 10 nm
gate length in (a) and a 50 nm length in (b). While the
currents at the upper end of the scale are similar in all cases,
∼2500 mA mm−1, it is evident that the shorter gate length
device has a higher threshold voltage. As one might expect,
a higher gate voltage is required to pinch off a device with
shorter gate length, though it should be reiterated that as part of
the scaling, the gate is closer to the channel in that case (dg =
2 nm, compared to dg = 10 nm for the 50 nm gate). Referring
back to figure 7(b), the point of peak transconductance is
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Figure 7. (a) The velocity along the channel for a set of scaled
devices as discussed in the text. (b) The transconductance in these
same devices for VDS = 1.0 V.

shifting further to the right as the gate length is shortened, as
one might expect from these Id results.

In figures 9(a) and (b), frequency response results are
shown for 10 and 50 nm gate lengths and a channel thickness
dc = 18 nm. A linear fit using a −20 dB/decade slope is
also shown and indicates an fT of 1.3 THz for the 50 nm gate
length and 2.2 THz for a 10 nm gate length structure. Note
that the 50 nm result for fT is larger than either of the 35 nm
results shown in figure 2(d). Thus, with a much shorter device
(300 nm here compared with 640 nm for those earlier results),
one can get away with using a longer gate length.

We shall now show how one can use these fT results
along with the results for velocity in the channel to formulate
an appropriate definition for the effective gate length, Leff

g ,
for these devices. As regards why such a quantity needs to
be considered, it has been previously recognized in devices
with very short gate lengths that the electrons in the channel
behave as if they were under the influence of a gate longer
than its actual physical dimensions [25]. Figure 10(a) shows
the average velocity of the electrons in the channel along the x
direction, as a function of the position along the channel for the
50 and 10 nm gate lengths. The cutoff frequency, fT, is related

6
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Figure 8. (a) The drain current as a function of both VDS and Vg for a
device with Lg = 10 nm and dc = 18 nm. (b) As in (a), but for a
device with a 50 nm gate length.

to τT, the time of transit under the gate:

τT = 1

2π fT
=

∫ Leff
g

0

dx ′

v
avg
x (x ′)

. (3)

Note here that Leff
g enters as the range over which the integral

to obtain τT is performed (in the integral, x ′ = x − x1, where
x1 corresponds to the starting point of the effective gate). In
figure 10(a), we indicate the physical beginning and ending
positions of the 10 and 50 nm gates. It is apparent that the
electrons start accelerating well before they reach the position
where the gate actually starts. This is understandable by
observing that they are actually responding to the electric field
generated by the gate, and that field can extend considerably
beyond the physical gate region in the regime that we are
exploring.

An important question is that of the best way to determine
Leff

g . Wu et al [8] suggested that the length of the depletion
region be used as Leff

g , and then combined this length with
an average velocity to compute a cutoff frequency. Here we
take the opposite approach. Given the cutoff frequency from
the small-signal RF analysis and the average velocities from
the Monte Carlo simulations, we take Leff

g to be the length
that satisfies equation (3). Moreover, we use the positions
where the electrons start to be accelerated as the starting
point of the effective gates. The dots superimposed onto

Figure 9. Frequency response characteristics for devices with
Lg = 50 nm in (a) and Lg = 10 nm in (b). Here, dc = 18 nm.
(c) Average electron velocity along the channel with the actual and
effective gate lengths also indicated (the gray and black dashed lines
indicate the beginning and end points for the 10 and 50 nm gate
length cases respectively). The dots represent the data points over
which the integral for transit time was computed for each, as per
equation (2). (d) The corresponding average electron density with
estimated depletion lengths indicated for the same two cases.

the velocity traces in figure 10(a) are the data points over
which the integrations were performed. Note that equation (3)
becomes satisfied when the position of maximum velocity is
reached. This seems to correlate with the position at which
significant numbers of carriers are transferred to the satellite
valleys (recall figure 5(b)). This correlation between the end of
the effective gate and the position of peak velocity appears to
hold for all the cases that we have considered.

The effective gate lengths for the 10 and 50 nm cases are
also indicated in the figure. Importantly, while longer than the
physical gate lengths, these lengths are considerably shorter
than the estimated depletion lengths, which are indicated in
figure 10(b). As is evident, these extend well beyond the
velocity peak. From our analysis, it is clear that using the
effective gate length derived from the depletion length would
lead one to underestimate the actual cutoff frequency by a
considerable amount: a factor of 2 or more. Why is there such

7
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Figure 10. (a) Average electron velocity along the channel with the
actual and effective gate lengths also indicated (the gray and black
dashed lines indicate the beginning and end points for the 10 and 50
nm gate length cases respectively). The dots represent the data points
over which the integral for transit time was computed for each, as per
equation (2). (b) The corresponding average electron density with
estimated depletion lengths indicated for the same two cases.

a large discrepancy? Importantly, if the gate is lengthened, one
would expect the effective gate length as we have defined it and
the depletion length to approach close to the same value when
the region over which the velocity drops off becomes small
compared to the physical gate length. In view of this, using the
latter to estimate fT is acceptable if the gate is comparatively
long. It is specifically in the short gate limit that we are
focusing on here where it becomes problematic.

In figure 11(a), the resulting frequency response for a
10 nm gate length and a narrower channel thickness, dc =
10 nm, is shown. The linear fit using a −20 dB/decade slope in
this case yields an fT = 2.4 THz, a bit larger than that for the
dc = 18 nm case, but the difference is not profound. Indeed,
as is evident in figure 12, the fT values for the two channel
thicknesses track each other rather closely.

Figure 11(b) shows the values of Leff
g that we computed

for the dc = 10 nm case as a function of the physical gate
length, Lg obtained using the methodology described above.
Note that, to a very good approximation, Leff

g scales linearly
with Lg. Given this, one can extrapolate down to Lg = 0.
As shown, the linear fit crosses zero at Leff

g = 18 nm. A
similar analysis carried out for the dc = 18 nm case yields

60

40

20

0

Lgeff

Lg

0 30 60

Figure 11. (a) Frequency response characteristics for a 300 nm
device with Lg = 10 and dc = 10 nm. (b) Effective gate length
versus physical gate length for the set of devices with dc = 10 nm.
The intersection point Leff

g (0) = 18 nm gives the lower limit for
effective gate length.

Leff
g (0) = 17 nm [6]. We believe that the slightly lower value

is due to the fringing fields being more significant in the case
of the narrower channel. Given these numbers, one can make
an estimate of the upper limit of fT in either case, as we shall
now show.

Figure 12 shows a plot of fT versus 1/Lg for dc = 18
and 10 nm. As one might expect from the previous discussion
on why an effective gate length is needed, fT does not scale
linearly with the physical gate length in either case, and a
far more linear trend is observed if 1/Leff

g is plotted. The
intersection of the fit with the line corresponding to Leff

g (0) =
17 nm yields an estimate of the absolute upper limit for fT, of
∼2.9 THz for dc = 18 nm. Meanwhile, the extrapolated upper
limit for fT is ∼3.1 THz using the point of intersection with
the Leff

g (0) = 18 nm line. It is higher, but not hugely so, in part
because of the offsetting effect of the increase in Leff

g (0).

5. Conclusions

We have conducted systematic investigations of ultra-
submicron-gate, In0.52Al0.48As/In0.75Ga0.25As/In0.52Al0.48As/

8
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Figure 12. Cutoff frequency determined from the frequency
response of the scaled devices as a function of the gate length. The
black/open symbols are for an 18 nm channel and the red/solid
symbols are for a 10 nm channel. Circles are for the physical gate
lengths, squares are for the effective gate length. The thin solid lines
indicate the linear fits to the effective gate data. The dashed lines
indicate the positions 1/Leff

g (0) for the two cases, and the intersection
points give the upper limit that fT can reach for the two cases.

InP, delta-doped, pseudomorphic HEMTs using a full-band
cellular Monte Carlo simulator. Our simulation work on this
important class of microwave transistors has suggested high
frequency device performance well above 1.5 THz for gate
lengths of 20 nm and less with ∼3 THz or higher perhaps being
achievable according to our limit studies. Device contacts
and source–drain spacing play a critical role in limiting the
static DC behavior and small-signal RF response, with the
effect of an effective internal source resistance via simulated
contact doping and that of internal series resistance via source–
drain spacing being a key issue. Reducing overall device
length improves performance. Our simulations also show
that the cutoff frequency also increases significantly with a
reduction in gate length, but an important detail as regards
those calculations is that the gate to channel distance also needs
to be scaled (recall that we used dg = Lg/5) at the same
time in order to get the most dramatic enhancement. In some
preliminary work that we did, we found that the results were far
less impressive if dg was not being scaled concurrently with
Lg. Thus, an important aspect of this work lies primarily in
the realization that scaling of this particular class of devices
must be conducted in a very careful and deliberate manner.
One cannot, for example, arbitrarily reduce the gate length
in the hope of dramatically improving the frequency response.
We found that reducing the channel thickness does not have a
dramatic effect on the cutoff frequency; however our work does
indicate that improved response may be achieved by reducing
the source to gate distance. Given such considerations, we
believe that there is certainly room for improvement over the
limits that we established in the previous section. Many other
aspects of the devices that could yield further improvement
have yet to be studied.

In closing, we should also point out that second-order
effects, such as gate to channel tunneling, do not appear in
the full-band CMC simulation package that we use. When

we reach the very small spacings of 2 nm that accompany
the 10 nm gate length in the gate length scaling study, this is
probably an effect that needs to be considered, and may impact
the performance of the devices at very high frequencies. These
effects will be explored in subsequent work.
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